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Abstract

This is a pedagogical paper on an amusing application of the concept of the kinetic
energy (KE). Using some rudimentary physical notions, we have analyzed the energetics
of the motion of Santa Claus. The results, which are quite surprising, can be of interest
to high school and early college physics educators when they teach KE, and energy
conservation in general.

Energy and its conservation is arguably one of the most fundamental concepts in physics,
and its teaching requires careful planning and effective pedagogy. Once the formalism is
introduced, introducing students to as many examples as possible is extremely helpful.
Routine examples abound in many textbooks, but interesting examples, the ones that really
get the attention of students are not as easy to come by. The analysis of the speed and
especially the energy consumption of Santa Claus can be a delightful experience for both
the teacher and students of introductory physics.

1 Santa Claus’s Energy Usage: Formalism

Santa Claus’s consumption of energy and heat production is the focus of this section. Be-
cause this energy turns out to be enormous, we have to consider a motion that minimizes
this consumption. With Nc the number of Christian children and n the number of children
per home, the number of chimneys Santa has to visit is Nc/n, and the time (call it T )
available to him for each chimney is 24× 3600/(Nc/n) or T = 86400n/Nc second.

Santa cannot afford to spend too much time in each house, because he has only 24 hours
to deliver all the toys he is carrying. On the other hand, he cannot spend too little time
moving through a chimney, because then he may need too much fuel for the resulting huge
kinetic energy. We need to calculate the optimal time spent per chimney, i.e., the time that
minimizes Santa’s energy consumption. Let t stand for the time of flight down (or up) a
chimney. We want to write Santa’s energy consumption in terms of t and find the t that
minimizes the energy. We assume that the only energy Santa uses is the energy required to
speed up (instantaneously) to his final speed. There are thus only two kinds of usage: for
traveling down and up the chimneys and for hopping from one chimney to the next. Denote
the first one by KEchim and the second one by KEhop.

With M and m denoting Santa’s mass and the mass of each toy, respectively, we can
write
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where h is the height of the chimney.
The hopping energy is a little more complicated. Santa starts out with a lot of toys;

but as he delivers the toys, their number decreases. Intuitively, we may want to take the
effective mass of santa plus the toys to be half the mass he starts with (Santa’s mass is
negligible compared with the total mass of the toys). It turns out that an exact calculation
of the hopping kinetic energy leads to the same result (see the Appendix). Therefore,
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where d is the (average) distance between two consecutive houses and T is as defined before.
Thus, as a function of t, the total energy per house is

KE(t) = KEhop + KEchim =
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Differentiating Equation (3) with respect to t and setting the derivative equal to zero,
we obtain
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If the notion of derivative is unfamiliar to students, one can substitute some reasonable
numbers (as done in the next section) in Equation (3), plot KE(t), and read off the t
corresponding to the minimum of KE(t).

2 Santa Claus’s Energy Usage: Numerics

We now put some reasonable numbers in the foregoing equations to get a feel for the mag-
nitude of the quantities associated with Santa’s motion.

Let us start by estimating the number of children and the number of houses. There are
approximately 1.5 billion Christians in the world, and—estimating drastically in Santa’s
favor—let us assume that eligible children constitute only 10 percent of this population.
Thus, Nc = 1.5 × 108. To make life really easy for Santa, let us assume a (very high)
concentration of 10 children per house. This brings the number of houses down to 1.5×107,
and makes T = 0.00576 s.

To further help Santa in his seemingly impossible task, we bring the houses next to each
other, make them really small, place them side by side on a straight line so that the distance
between consecutive chimneys is only 10 meters, for each we construct a short chimney of
only 4 meters, make Santa a thin 100-kg person, and assume a light average mass of 2 kg
per toy. These parameters yield a value of 204.26 for a, and a numerical formula

KE(t) =
7.5× 109

(0.00576− 2t)2
+

1760
t2

which can be plotted as a funtion of t. Using the numerical value of a in (4), or reading
off from the plot of KE(t), the t that minimizes the energy is found to be 0.0000279 s, or
0.0000558 seconds per chimney; i.e., Santa will have to cover about 18000 chimneys every
second! Since this does not violate any physical laws, let us accept it.
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What is more significant is Santa’s energy consumption, which we have assumed to be
used simply to speed him (and his toys) up. The energy corresponding to the motion down
a chimney is

KEdown = 1
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)2

= 1.23× 1012 Joules,

with a slightly lower energy (1.03× 1012 J, because he leaves the toys in the house) for the
motion up the chimney.

2.1 A Comparison

The “hopping” energy is

KEhop =
(

(1.5× 108)(2)
4

) (
10

0.00576− 0.0000558

)2

= 2.3× 1014 J

which is about 100 times larger than KEchim; so in calculating the total energy, we can
ignore the latter. For all the 15 million houses, Santa needs 3.3 × 1021 J. This is a huge
amount of energy. Nevertheless, it is the minimum amount Santa can spend. But what does
it really mean? To get a feel for its magnitude, we have to compare it with another huge
quantity of energy. For example, how does it compare with the yearly energy consumption
of the world? The entire annual energy consumption of the world was about 4×1020 Joules
in 2001 [1]. This includes not only the typical residential usage such as heating, lighting,
cooking, commuting and entertainment, but also the large scale industrial, agricultural, and
transportation consumption. In short, it is the entire energy used in the world in all its
shapes and forms. Santa uses over 8 times the annual world energy supply in one day !
Thus, the entire world must stop using any form of energy for over 8 years so that Santa
will be able to deliver his toys in one day. Clearly Noel’s visit cannot be an annual event.
At best it can be done every decade, for the preparation of which the whole population of
the world (Christian and non-Christian) must stop consuming any form of energy!

2.2 The Explosions

Although extremely difficult, the people of the world might be willing to tolerate all the
harshness caused by Santa’s trip were it not for the revelation that behind his jolly “ho, ho,
ho” there is destruction. Huge destruction! Far beyond the kind of destruction that one
hears about in terrorists’ bomb attacks! Of course, Santa’s destructions are not intentional,
but he just can’t help exploding houses as he visits them! How can that be?

An explosion is simply the release of a large amount of energy in a small time period.
Take Santa’s plunge down a typical chimney. We found that he has a kinetic energy of
1.23× 1012 Joules when he reaches the bottom of the chimney. This energy turns into heat
when he brakes to a complete stop. For comparison, the heat produced in the explosion of
a ton of TNT is about 4 × 109 Joules. Thus, Santa releases the equivalent of 307.5 tons
of TNT when landing in the house, and almost the same amount when he climbs up the
chimney and stops at the roof! And a time interval of less than 27.9 microseconds for each
of these releases is short enough to qualify them as explosions.

But the real killer is the explosion caused by his landing at the chimney as he comes
from the previous house. His KE as he lands at the chimney is 2.3 × 1014 Joules, and this
energy is turned into heat in less than 0.00576 second, qualifying this release of energy as an
explosion as well. How many tons of TNT is this equivalent to? 2.3× 1014/4× 109 = 57500
tons of TNT! Suffice it to say that the destructive power of “Little Boy,” the bomb that
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was dropped on Hiroshima, was a “mere” 15000 tons of TNT. Every time Santa lands at
a chimney, he detonates about 4 Hiroshima-type bombs, and he is at ground zero of every
blast! Santa is the ultimate “suicide bomber,” who survives the equivalent of 15 million
gigantic nuclear blasts every year!

A Appendix

Recalling that Nc/n is the number of houses, the total hopping KE can be written as
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Dividing this by the number of houses, we get

KEhop = 1
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because Ncm is much greater than M and mn/2.
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