Chapter 21

Calculus of Residues

One of the most powerful tools made available by complex analysis is the
theory of residues, which makes possible the routine evaluation of certaineal
debPnite integrals that are impossible to calculate otherwise. Example 20.2.6
showed a situation in which an integrd was related to expansion cok cients
of Laurent series. Here we will develop a systematic way of evaluating both
real and complex integrals using the same idea.

Recall that a singular point z, of f (z) is a point at which f fails to be
analytic. If, in addition, there is some neighborhood of z, in which f is
analytic at every point (except, of course, atz, itself), then z, is called an
isolated singularity  of f. All singularities we have encountered so far have isolated singularity
been isolated singularities. Although singularities that are not isolated also
exist, we shall not discuss them in this book.

21.1 The Residue

Let zg be an isolated singularity off . Then there exists anr > 0 such that,
within the OannularO region &< [z ! Zzy| <r, the function f has the Laurent
expansion

100 . loo . by b, o
f(z) = an(z! 2zo) an(z! zo)" + - zO+ @ ZO)2+aaa
n=—oo n=0
where
— i f(")d" — i LAYALN n—1 qn
= o T g Ad =g OO 2)Td
In particular, "
b = i f()d, (21.1)
2L ¢

1We are using by for ay n.
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residue debned

where C' is any simple closed contour aroundzg, traversed in the positive
sense, on and interior to whichf is analytic except at the point zg itself.

Box 21.1.1. The complex numberb;, which is % times the integral of
f(z) along the contour, is called theresidue of f at the isolated singular
point zo.

It is important to note that the residue is independent of the contour C as
long aszg is the only isolated singular point within C.
|

Example 21.1.1. We want to evaluate the integral 'C sinzdz/(z! !/2)® where
C is any simple closed contour havingz = ! /2 as an interior point.

To evaluate the integral we expand around z = ! /2 and use Equation (21.1).
We note that

# ¢ 2n 2
L P n(z! 17125 (z! 1/2)
sinz=cos z! 5 = n:0(! 1) @n)] =1 3 + ...
SO % &
sinz  _ 1 ;1 1
(z! 1123~ (z! 1723 2 z! 1]2
It follows that b, = ! %;therefore, 'C sinzdz/(z! !/2)3 =2liby =11il. !
|

Example 21.1.2. The integral 'C cosz dz/z?, where C is the circle |z| = 1, is

zero because

cosz_ 1% w2 1,1 7

== (11

z2 z2

i ey 2w’

yields by = 0 (no 1/z term in the Laurent expansion). Therefore, by Equation (21.1)
the integral must vanish. |

When C is the circle |z] = 2, 'CeZ dz/(z! 1)® = i! e because
" $ | n I | 2 (
f=ed ‘=e u:e1+(z!1)+(2'1)+...

n! 2!
n=0
and ' % & (
¢ =e 1 t .1t L
(z! 137 7 (z!' 1* (z!' 12 2 z!1

Thus, by = e/2, and the integral is 2! ib; = il e. !

We use the notation Resf(2o)] to denote the residue of f at the isolated
singular point zp. Equation (21.1) can then be written as

f(2)dz =2"iRes[f(20)].
c

What if there are several isolated singular points within the simple closed
contour C? Let Cx be the positively traversed circle around zx shown in
Figure 21.1. Then the CauchybGoursat theorem yields

)

0= f(x)dz= f(2) dz+ fR)dz+  f(2)dz,
c’ circles p%’;ﬁygl C
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Figure 21.1: Singularities are avoided by going around them.

where C' is the union of all contours inside which union there are no singu-
larities. The contributions of the parallel lines cancel out, and we obtain

! mm ' mm
f(z)dz=" f(z)dz= 2! i Resf (z)],
c k=1 C« k=1

where in the last step the debnition of residue atzx has been used. The minus
sign disappears in the bnal result because the sense ©f, while positive for
the shaded region of Figure 21.1, is negative for the interior ofCx because
this interior is to our right as we traverse Cy in the direction indicated. We
thus have

Theorem 21.1.3. (The Residue Theorem). Let C be a positively inte-
grated simple closed contour within and on which a functionf is analytic
except at a Pnite number of isolated singular pointgi, z, ..., zy interior to
C. Then !

f(z)dz=21i  Resk (z)]. (21.2)
c k=1

#
Example 21.1.4. Let us evaluate the integral . (2z! 3)dz/[z(z! 1)] where C
is the circle |z| = 2. There are two isolated singularities in C, zz =0 and z, = 1.
To bnd Resff (z1)], we expand around the origin using Equation (20.2):
2z!'3 _3, 1 _3 1 3
>

= = —+ = —+1+ z+ 444 f < 1.
z(z! 1) z!'1 z 1l z z z+aaa for 2]

This gives Resf (z1)] = 3. Similarly, expanding around z =1 gives

22! 3 3 1 1 Moo
= I =1 | n | n
2@ D @ D+l zri gt ety

which yields Res[f (zz)] = ! 1. Thus,
1

2z! 3

. D dz = 2 wi{Resf (z1)] + Res[f (z2)]} =2#i(3! 1) =4ri.
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principal part of a
function

removable singular
point

poles debned

simple pole

Let f (z) have an isolated singularity at zo. Then there exist a real number
r> 0 and an annular region 0< |z! zo| <r such that f can be represented
by the Laurent series

(@= Y a2 z)"+ Y ﬁ (21.3)
n=1 ’

n=0

The second sum in Equation (21.3), involving negative powers ofZ! zp), is
called the principal part of f at zo. The principal part is used to classify
isolated singularities. We consider two cases:

(@ If b, =0forall n" 1,z is called aremovable singular point  of f.
In this case, the Laurent series contains only nonnegative powers o( zg),
and setting f (zo) = ap makes the function analytic at zo. For example, the
function f (z) = (€#! 1! Zz)/z?, which is indeterminate at z = 0, becomes
entire if we setf (0) = 1/2, because its Laurent series

1z 272
I TR
has no negative power.
(b) If b, =0 forall n>m and b, #0, 7y is called apole of order m. In
this case, the expansion takes the form

b b
z!

+ oo+ —
Z0 (z! zp)m

f(@)= Yan(z! 2) +

n=0
for0< |z! Zzp|<r. In particular, if m =1, zq is called asimple pole .

Example 21.1.5. Let us consider some examples of poles of various orders.

(a) The function (22 —3z+5)/(z — 1) has a Laurent series around z = 1 containing
only three terms: (22 —3z45)/(z —1) = =1+ (2 — 1) +3/(z — 1). Thus, it has a
simple pole at z = 1, with a residue of 3.

(b) The function sin z/2° has a Laurent series

smz_ Z 22t i_L_F 1 _Z 444
26 T 28 2n—|— @n+1)! 25 622 Bz T

about z = 0. The principal part has three terms. The pole, at z = 0, is of order 5,
and the function has a residue of 1/120 at z = 0.
(c) The function (22 — 52+ 6)/(z — 2) has a removable singularity at z = 2, because

225246  (2—2)(z—23) _

z—2 B z—2 —3=-1+(-2)

and b, = 0 for all n. ]
The type of isolated singularity that is most important in applications is

of the second typeNpoles. For a function that has a pole of ordemn at z,
the calculation of residues is routine. Such a calculation, in turn, enables us
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to evaluate many integrals e! ortlessly. How do we calculate the residue of a
function f having a pole of order m at zo?

It is clear that if f has a pole of order m, then g(z) defined by g(z) !
(z" 20)™f(2) is analytic at z9. Thus, for any simple closed contour C' that
contains zg but no other singular point of f, we have

| |
' 1 glz)dz g™ Y(z)

1
Res[f(20)] = T Cf(Z)dZZ Wi o 2  (me 1)

where we used Equation (19.10). In terms of f this yields?

1 ) dm! 1 . "
Res|f (0)] = oy i g7 200" f) (214)

For the special, but important, case of a simple pole, we obtain
Res[f(z0)] = Jim [(=" z0)f(2)): (21.5)

The most widespread application of residues occurs in the evaluation of
real definite integrals. It is possible to “complexify” certain real definite in-
tegrals and relate them to contour integrations in the complex plane. What
is typically involved is the addition of a number of semicircles to the real
integral such that it becomes a closed contour integral whose value can be
determined by the residue theorem. One then takes the limit of the contour
integral when the radii of the semicircles go to infinity or zero. In this limit
the contributions from the semicircles should vanish for the method to work.
In that case, one recovers the real integral. There are three types of integrals
most commonly encountered. We discuss these separately below. In all cases
we assume that the contribution of the semicircles will vanish in the limit.

21.2 Integrals of Rational Functions

The first type of integral we can evaluate using the residue theorem is of the
form "

o q()
where p(x) and ¢(x) are real polynomials, and ¢(z) # 0 for any real x. We
can then write

" R "
1 = lim p_x) dor =

lim p(2)
R% | pq(x) R# o q(2)

3

where C, is the (open) contour lying on the real axis from " R to +R. We
now close that contour by adding to it the semicircle of radius R [see Fig-
ure 21.2(a)]. This will not al! ect the value of the integral because, by our

2The limit is taken because in many cases the mere substitution of zo may result in an
indeterminate form.

application of the
residue theorem in
evaluating definite
integrals
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3i

(@) (b)

Figure 21.2: (a) The large semicircle is chosen in the UHP. (b) Note how the direction
of contour integration is forced to be clockwise when the semicircle is chosen in the
LHP.

assumption, the contribution of the integral of the semicircle tends to zero in
the limit R!" . We close the contour in the upper half-plane (UHP) if ¢(2)
has a zero there. We then get

! nk # i
L=1m Y4221 Res 23)
R ¢ q(2) j=1 q(%)

)

where C' is the closed contour composed of the interval # R, R) and the
semicircleCr, and {z }J!‘:l are the zeros ofg(z) in the UHP. We may instead
close the contour in the lower half-plane (LHP), in which case

wm # $

L=#2i Res M)
{21 q(z)

)

where {2 }jm:l are the zeros ofg(z) in the LHP. The minus sign indicates that

in the LHP we (are forced to) integrate in the negative sense.
%
Example 21.2.1. Let us evaluate the integral | = | x?dx/ [(x* + 1)( x* + 9)].
Since the integrand is even, we can extend the interval of integration to all real
numbers (and divide the result by 2). It is shown below that in the limit that the
radius of the semicircle goes to inPnity, the integral of that semicircle goes to zero.
Therefore, we write the contour integral corresponding to |:
|
1 2 dz

T3 L@z

where C is as shown in Figure 21.2(a). Note that the contour is integrated in the
positive sense. This is always true for the UHP. The singularities of the function
in the UHP are the simple polesi and 3i corresponding to the simple zeros of the
denominator. By (21.5), the residues at these poles are
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! ) " .
AR . z _
RestOI=En B e ey T e

) . ) z? 3
Resf (3i)] = |Z|!~n3i (z! 3I)(22+1)(z! D) = 6"

Thus, we obtain
% &
x? dx 1$ 7?2 dz . Ol 1 3 !

o (ZFD(x2+9) 2 o (Z+D(22+9 | 16 16 8

It is instructive to obtain the same results using the LHP. In this case the contour
is as shown in Figure 21.2(b). Itis clear that the interior is to our right as we traverse
the contour. So we have to introduce a minus sign for its integration. The singular
pointsareat z="! i and z= ! 3i. These are simple poles at which the residues of
the function are

g . z? 1
Rest (D= I, .(Z+ Ve NZ+e - 18
N1 ’ ) 22 B 3
Resl(t 301= s (Z+3l)(22+1)(z! 3i)(z+3i) "6
Therefore, .
e x2 dx 1$ z2dz ,/01 3&_1

- — == 2= = e —— I | 1 — =
o (XZ+1)(x%2+9) 2 o (z2+1)(z2+9) ! 16 16 8’
We now show that the integral of the large circle ! tends to zero. On such a
circle, z = Re'' ; therefore
# #

Z2 dz _ RZeZi! Rei! d"
@+ D(22+9) | (R +1)(R% +9)
In the limit that R "# , we can ignore the small numbers 1 and 9 in the denom-
inator. Then the overall integral becomes 1/R times a Pnite integral over ". It

follows that as R tends to inPnity, the contribution of the large circle indeed goes to
zero. !

Example 21.2.2. Let us now consider a more complicated integral:

# .
x2 dx

which turns into 7% dz/[(z> +1)( 22 +4) ?]. The poles in the UHP are at z = i and
z =2i. The former is a simple pole, and the latter is a pole of order 2. Thus,
I X

o . z? 1
Resf ()] =1lim (24 1) N(z+ (2 +4)? =15 )
S 1 . ' N2 z’
Rest 201 = 77 1)g|z'!'mzia (2! 2) Ty zr 22zt 2y
sm &2 5
Taioidz (z2+1)(z+20)2 T2
d 0
o e x2 dx —2li/0| 1, 5&_!
e (Z+1L)(x2+4)2 77 18 720 T 36

Closing the contour in the LHP would yield the same result as the reader is urged
to verify. !
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21.3 Products of Rational and Trigonometric
Functions

The second type of integral we can evalate using the residue theorem is of
the form I I
PG cosax dx or pe) sinax dx,
—o0 A(X) —o0 (%)
where a is a real number, p(x) and g(x) are real polynomials in x, and q(x)

has no real zeros. These integrals are the real and imaginary parts of
! o0
|2 - p(X) eiaX d
—o0 A(X)

The presence o® dictates the choice of the half-plane: Ifa! 0, we choose
the UHP because

X.

eiaz — eia(x+iy) — eiax e—ay where y > 0,

and the negative exponent ensures convergence for largeandy. For the same
reason, we choose the LHP whea " 0. The following examples illustrate the
procedure.

Example 21.3.1. Let us evaluate ', gpsaxdx/ (x? +1)2 where a 7 0. This
integral is the real part of the integral 1, = ', e®™ dx/ (x2+1)2. When a> 0, we
close in the UHP. Then we proceed as for integrals of rational functions. Thus, we
have # _

laz
I, = CWdz=2!|Res[f(|)] for a> 0,

because there is only one singularity in the UHP at z = i which is a pole of order 2.
We next calculate the residue: o

0

iaz

N =i d 2 €
T B Vg
j 0 N %,
—jim 9 &y (@ Diae™ —26% e a(1+ a)
T oz#idz (z+ )2 e DE = )

Substituting this in the expression for |,, we obtain 1, = (!/2)e" (1+ a) for a > 0.
When a < 0, we have to close the contour in the LHP, where the pole of order

2 is at z = —i and the contour is taken clockwise. Thus, we get
# iaz
= & _ _4z= —2iResf(—i)] fora<o0
27 @D | |

For the residue we obtain
%

eiaz _ e?
= -5 (1-2a)

. . d 2

— = J— + e —

Rest (=)1=lm 5, @+ D" a7+

and the expression for |, becomesl, = (! /2)e?(1 — a) for a < 0. We can combine
the two results alnd write

cosax

L paepz HERe(Z= 12 S jape .
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Example 21.3.2. As another example, let us evaluate

1 .
" xsinax
dx wherea Z 0.
/. x4 +4 7

This is the imaginary part of the integral |2 = f', xe® dx/ (x*+4) which, in terms
of z and for the closed contour in the UHP (when a > 0), becomes

Iy = 7{0 sz+ 7 9z =2 ; Resf (z;)]  for a> 0, (21.6)

where C is the large semicircle in the UHP. The singularities are determined by the
zeros of the denominator: z*+4 =0or z=1 +i, —14i. Of these four simple poles
only two, 1+ i and —1 + i, are in the UHP. We now calculate the residues:

Ze’iaz
z—1—-i)(z—-1+i)(z+1 —i)(z+1+ i)
_ (1+ i)eia(1+i) _ eiae" a
T @hEE+2i) 0 8

Resff (1 + i)] = ZILmHi(z —-1-— i)(

. ) o Zeia,z
Resf(=1+D1= Im @+l =) T hasis nz—1-nEz -1+
B (_1+ i)eia(" 1+414) _ _e" iae" a
T @) (=2)(—2+2i) 8i
Substituting in Equation (21.6), we obtain
.e"a 7a "day _ 0 " s
o =27i 5 (e —-e )= |§e sina.
Thus, '
" xsinax T g .
/l i d dx =Im( 1) = 56 sina for a> 0. (21.7)

For a < 0, we could close the contour in the LHP. But there is an easier way of
getting to the answer. We note that —a > 0, and Equation (21.7) yields

1 . | .
© X sinax _ © xsin[(—a)x] L M) I
/-. x4 +4 dx = _/, de— —5e sin(—a) = 5¢€ sina.

We can collect the two cases in

al .
' xsinax 7o
dx = =¢e !“'sina.
/, x*+4 2 !

Example 21.3.3. The integral fo' sinaz gy occurs frequently in physics. To eval-
uate it, brst we assume that a > 0 and note that since the integrand is even, we can
extend the lower limit of integration to —oo and write

q| . Nl .
/ sinax dx = } sinax dx.
0 X 2 Ju X

As in the previous examples, we are inclined to choose the contourC in the UHP.
However, since C passes through the origin, this will not work because the origin is
the pole of the integrand. So, letOs avoid the origin by going around it on a small
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Figure 21.3: To avoid the origin move on an inPnitesimal semicirctg of radiuse.

circle of radius ¢ as shown in Figure 21.3. This contour does not surround a pole.
Therefore, we can write

iaz —€ iax iaz oo _iax
e e

dz = € dx + dz + dx

c < —o & w R € €T

As ¢ — 0, the two integrals in = become a single integral over all real numbers.
Thus, we get " "

0=

[e'e) eiacc iaz
dr = —lim dz
oo T =0 0z
But on ~y, z = ee®. Thus
iaz 0 iaee® ) 0 o
lim dz = lim __jee’dh = ilim € df= —in
e—0 z e—0 eet? e—0
" ™
and " )
o0 axr
e .
dr = im.
e T

Putting everything together, we obtain

° sinax 1 °° sinax 1 oo glaw 1 T
de= = de= Z1Im de= ZIm(ir) = =
L T =g T mde=gIm . —mde=Simiim) = 3
If a <0, then sinaz = —sin|a|z and we get the negative of the answer above. !

21.4 Functions of Trigonometric Functions

The third type of integral we can evaluate using the residue theorem involves
only trigonometric functions and is typically of the form

2!
F(sin!, cos!)d!,
0
where F is some (typically rational) function ® of its arguments. Since! varies
from 0 to 2", we can consider it as the angle of a point on the unit circle

SRecall that a rational function is, by debnition, the ratio of two polynomials.



21.4 Functions of Trigonometric Functions 535

centered at the origin. Thenz = €' and ¢' ' =1 /2, and we can substitute
cos! =(z+1/z2)/2,sin! =(z! 1/2)/(2i), and d! = dz/(iz) in the original

integral to obtain
7{ 2V 1)z z2+1/z\ dz
F A Y A I
c 2 2 iz

This integral can often be evaluated using the method of residues.

Example 21.4.1. Let us evaluate the integral fZTr de/ (1 + acos ) where |a] < 1.
Substituting for cos8 and df in terms of z, we obtain

dzliz 2 dz
cl+a[(z2+1)/2z] i Jo2z+azz+a’
where C is the unit circle centered at the origin. The singularities of the integrand
are the zeros of its denominator 2z +az? +a! a(z" z1)(z" z2) with

#___ #__

n 1+ 1:: a2 " 1:: 1|| az

] = —— and Iy = —— .
a a

For |a| < 1 it is clear that z, will lie outside the unit circle C; therefore, it does not
contribute to the integral. But z; lies inside, and we obtain

' dz .
)’{c wrarzra 2 Reslf ()]

The residue of the simple pole at z; can be calculated:

Reslf (20)] = zhlel(z Zl)a(z " zli(z " Z2) - é

_ 1( H a >7 H 1
a\2 1" a2 21" a2’
It follows that

r de 2 dz 2. 1 2n
- _z — = = 2omi (| # =# .
o l+4acos® i Jo2z4+az2+a i 2 1" a2 1" a2 u

Example 21.4.2. As another example, let us consider the integral

| :/ B here a1
o (a+cosB)?
Since cos 8 is an even function of 6, we may write
1 [7 do
|l == —_— h a> 1.
2 /77r (a+ cosB)? where

This integration is over a complete cycle around the origin, and we can make the
usual substitution:

dz/iz _2 f{ zdz
cla+ (@@ +1)/222 i [, (z22+2az+1)2°
- #__
The denominator has the roots z1 =" a+ a2" landz ="a" a2" 1 which

are both of order 2. The second root is outside the unit circle because a > 1. The
reader may verify that for all a> 1, z; is inside the unit circle. Since z; is a pole of
order 2, we have



536

Calculus of Residues

Resff (z1)] = lim

. d
= |lim

z! Zl&

We thus obtain

21.5 Problems

d
zl z; dz

{(z I z1)?

z
(2! z1)2(z! z2)2

271 a

| = igz! i Resf (21)] = 2

(az | 1)3/2'

z _ 1 .
(z! 22)2} T (z! )2 (z1! ) 4@@2! 1)¥2°

21.1. Evaluate each of the following integrals, for all of which C' is the circle

|z| = 3:
(a) ]g %dz.
(d) fé; %dz.
(=) ]gsinhde.

4
() ?{tanzdz.
c
dz
(m) ?({: 22sinz dz

(b) 75 Z(zei_zi!)dz.
(@) ]g S
(h) jizcos@) dz.
() fi e

et dz
@)£<z—nw—2y

() 75 e (Czoiz!)dz.
(f) fi 1ocosz _Zczoszdz.

21.2. Find the residue of f(z) = 1/ cosz at all its poles.

21.3. Evaluate the integral [;° dx/[(z? 4+ 1)(2? + 4)] by closing the contour
(a) in the UHP and (b) in the LHP.

21.4. Evaluate the following integrals in which a and b are nonzero real con-

stants:

22241
———dux.
(a)/o 2 502 46"

o cosz dx *  cosax
(d)/o (@2 + a?)2(a? + 1?)° (e)/o @+ e

dx

() /o @2+ 122 +2)

) /°° xdr
V] @4z +13)2

> gcoszdx
(m)/ o By

22 —2x+10°

e x?dx
) /o (@2 + 4)2(a2 + 25)

o dx
b _
( )/o 6x* + 522 + 1

922 — 1
h - dx.
()/o x6+1dx

o0 3 .
(k)/ x° sin ax d.
0

28 4+1

()/OO rsinx dx
. oo T2 — 22410

* cosax
————dux.
W [

0] wr
0 ) e
0 /OOO zz—ii dz.
o [

*© dx
o), wrw

21.5. Evaluate each of the following integrals by turning them into contour
integrals around the unit circle.
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! 2w de ! 2w do
—_—. S r— h > 1.
[0 5+ 4sind (b) [0 a-+ cosf where a
* 27 *27
do do
e d R — here a, b > 0.
o 1+4sin®6 ( )' o (a+bcos?6)? where
2T cos? 36 T do

(e) 0 5—4cos20ﬂd9' Cosgf;¢@¢1—2acos¢+a2
where a # £1.

(&) |0 1 —2acos ¢ + a2
T cos 2¢ do
o 1—2acos¢ + a?

(a)
()

where a # £1.

(h)

21.6. Use the method of|residues to show that

" on _ (2n)!
. cos”" fdf = 7r722n COE

21.7. Use the contour in Figure 21.4(a) to show that
!

> sin X

dx =

by letting X — oo, Y — o0, and € — 0.

21.8. Use the contour in Figure 21.4(b) to show that
I
R | 7/n

o Ll4xn dx = sin(7/n)

by letting R — o0.
21.9. Use the contour in Figure 21.4(c) to show that
' | n

sin(x?) dx = cos(x?) dx =
0 0

| 3|

by letting R — o0.

—X+iY X+iY

fp\ 2n/n n/4

where a # £1.

(a) (b) (c)

Figure 21.4: (a) The contour used for sinx/x . (b) The contour used for 1/ (1 + Xx").

(c) The contour used for sin(x?).



