
Chapter 21

Calculus of Residues

One of the most powerful tools made available by complex analysis is the
theory of residues, which makes possible the routine evaluation of certainreal
deÞnite integrals that are impossible to calculate otherwise. Example 20.2.6
showed a situation in which an integral was related to expansion coe! cients
of Laurent series. Here we will develop a systematic way of evaluating both
real and complex integrals using the same idea.

Recall that a singular point z0 of f (z) is a point at which f fails to be
analytic. If, in addition, there is some neighborhood of z0 in which f is
analytic at every point (except, of course, at z0 itself), then z0 is called an
isolated singularity of f . All singularities we have encountered so far have isolated singularity
been isolated singularities. Although singularities that are not isolated also
exist, we shall not discuss them in this book.

21.1 The Residue

Let z0 be an isolated singularity of f . Then there exists anr > 0 such that,
within the ÒannularÓ region 0< |z ! z0| < r , the function f has the Laurent
expansion1

f (z) =
∞!

n=−∞
an (z ! z0)n "

∞!

n=0

an (z ! z0)n +
b1

z ! z0
+

b2

(z ! z0)2
+ á á á,

where

an =
1

2! i

"

C

f (" ) d"
(" ! z0)n+1

and bn =
1

2! i

"

C
f (" )( " ! z0)n−1 d" .

In particular,

b1 =
1

2! i

"

C
f (" ) d" , (21.1)

1We are using bn for a! n .
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where C is any simple closed contour aroundz0, traversed in the positive
sense, on and interior to whichf is analytic except at the point z0 itself.residue deÞned

Box 21.1.1. The complex numberb1, which is 1
2! i times the integral of

f (z) along the contour, is called theresidue of f at the isolated singular
point z0.

It is important to note that the residue is independent of the contour C as
long asz0 is the only isolated singular point within C.

Example 21.1.1. We want to evaluate the integral
!

C sin z dz/ (z ! ! / 2)3 where
C is any simple closed contour having z = ! / 2 as an interior point.

To evaluate the integral we expand around z = ! / 2 and use Equation (21.1).
We note that

sin z = cos
"

z !
!
2

#
=

!$

n =0

(! 1)n (z ! ! / 2)2n

(2n)!
= 1 !

(z ! ! / 2)2

2
+ · · ·

so
sin z

(z ! ! / 2)3
=

1
(z ! ! / 2)3

!
1
2

%
1

z ! ! / 2

&
+ · · · .

It follows that b1 = ! 1
2 ; therefore,

!
C sin z dz/ (z ! ! / 2)3 = 2 ! ib1 = ! i ! . !

Example 21.1.2. The integral
!

C cosz dz/z 2, where C is the circle |z| = 1, is
zero because

cosz
z2

=
1
z2

!$

n =0

(! 1)n z2n

(2n)!
=

1
z2

!
1
2

+
z2

4!
+ · · ·

yields b1 = 0 (no 1 /z term in the Laurent expansion). Therefore, by Equation (21.1)
the integral must vanish.

When C is the circle |z| = 2,
!

C ez dz/ (z ! 1)3 = i ! e because

ez = eez " 1 = e
!$

n =0

(z ! 1)n

n!
= e

'
1 + ( z ! 1) +

(z ! 1)2

2!
+ · · ·

(

and
ez

(z ! 1)3
= e

'
1

(z ! 1)3
+

1
(z ! 1)2

+
1
2

%
1

z ! 1

&
+ · · ·

(
.

Thus, b1 = e/ 2, and the integral is 2! ib1 = i ! e. !

We use the notation Res[f (z0)] to denote the residue off at the isolated
singular point z0. Equation (21.1) can then be written as

)

C
f (z) dz = 2 ! i Res[f (z0)].

What if there are several isolated singular points within the simple closed
contour C? Let Ck be the positively traversed circle around zk shown in
Figure 21.1. Then the CauchyÐGoursat theorem yields

0 =
)

C ′
f (z) dz =

)

circles
f (z) dz +

)

parallel
lines

f (z) dz +
)

C
f (z) dz,
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Figure 21.1: Singularities are avoided by going around them.

where C! is the union of all contours inside which union there are no singu-
larities. The contributions of the par allel lines cancel out, and we obtain

!

C
f (z) dz = !

m"

k=1

!

Ck

f (z) dz =
m"

k=1

2! i Res[f (zk )],

where in the last step the deÞnition of residue atzk has been used. The minus
sign disappears in the Þnal result because the sense ofCk , while positive for
the shaded region of Figure 21.1, is negative for the interior ofCk because
this interior is to our right as we traverse Ck in the direction indicated. We
thus have

Theorem 21.1.3. (The Residue Theorem). Let C be a positively inte-
grated simple closed contour within and on which a functionf is analytic
except at a Þnite number of isolated singular pointsz1, z2, . . . , zm interior to
C. Then !

C
f (z) dz = 2 ! i

m"

k=1

Res[f (zk )]. (21.2)

Example 21.1.4. Let us evaluate the integral
#

C
(2z ! 3) dz/ [z(z ! 1)] where C

is the circle |z| = 2. There are two isolated singularities in C, z1 = 0 and z2 = 1.
To Þnd Res[f (z1)], we expand around the origin using Equation (20.2):

2z ! 3
z(z ! 1)

=
3
z

!
1

z ! 1
=

3
z

+
1

1 ! z
=

3
z

+ 1 + z + á á á for |z| < 1.

This gives Res[f (z1)] = 3. Similarly, expanding around z = 1 gives

2z ! 3
z(z ! 1)

=
3

(z ! 1) + 1
!

1
z ! 1

= !
1

z ! 1
+ 3

∞"

n=0

(! 1)n(z ! 1)n

which yields Res[f (z2)] = ! 1. Thus,
!

C

2z ! 3
z(z ! 1)

dz = 2 πi { Res[f (z1)] + Res[ f (z2)]} = 2 πi (3 ! 1) = 4 πi.
!
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Let f (z) have an isolated singularity at z0. Then there exist a real number
r > 0 and an annular region 0< |z ! z0| < r such that f can be represented
by the Laurent series

f (z) =
!∑

n =0

an (z ! z0)n +
!∑

n =1

bn

(z ! z0)n . (21.3)

The second sum in Equation (21.3), involving negative powers of (z ! z0), is
called the principal part of f at z0. The principal part is used to classifyprincipal part of a

function isolated singularities. We consider two cases:
(a) If bn = 0 for all n " 1, z0 is called a removable singular point of f .removable singular

point In this case, the Laurent series contains only nonnegative powers of (z ! z0),
and setting f (z0) = a0 makes the function analytic at z0. For example, the
function f (z) = ( ez ! 1 ! z)/z 2, which is indeterminate at z = 0, becomes
entire if we set f (0) = 1 / 2, because its Laurent series

f (z) =
1
2

+
z
3!

+
z2

4!
+ · · ·

has no negative power.
(b) If bn = 0 for all n > m and bm #= 0, z0 is called apole of order m. Inpoles deÞned
this case, the expansion takes the form

f (z) =
!∑

n =0

an (z ! z0)n +
b1

z ! z0
+ · · · +

bm

(z ! z0)m

for 0 < |z ! z0| < r . In particular, if m = 1, z0 is called asimple pole .simple pole

Example 21.1.5. Let us consider some examples of poles of various orders.
(a) The function (z2 −3z +5)/(z−1) has a Laurent series around z = 1 containing
only three terms: (z2 − 3z + 5)/(z − 1) = −1 + (z − 1) + 3/(z − 1). Thus, it has a
simple pole at z = 1, with a residue of 3.
(b) The function sin z/z6 has a Laurent series

sin z
z6

=
1
z6

!∑

n=0

(−1)n z2n+1

(2n + 1)!
=

1
z5

− 1
6z3

+
1

(5!)z
− z

7!
+ á á á

about z = 0. The principal part has three terms. The pole, at z = 0, is of order 5,
and the function has a residue of 1/120 at z = 0.
(c) The function (z2 −5z+6)/(z−2) has a removable singularity at z = 2, because

z2 − 5z + 6
z − 2

=
(z − 2)(z − 3)

z − 2
= z − 3 = −1 + (z − 2)

and bn = 0 for all n. !

The type of isolated singularity that is most important in applications is
of the second typeÑpoles. For a function that has a pole of orderm at z0,
the calculation of residues is routine. Such a calculation, in turn, enables us
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to evaluate many integrals e! ortlessly. How do we calculate the residue of a
function f having a pole of order m at z0?

It is clear that if f has a pole of order m, then g(z) defined by g(z) !
(z " z0)mf(z) is analytic at z0. Thus, for any simple closed contour C that
contains z0 but no other singular point of f , we have

Res[f(z0)] =
1

2! i

!

C
f(z) dz =

1
2! i

!

C

g(z) dz

(z " z0)m
=

g(m! 1) (z0)
(m " 1)!

,

where we used Equation (19.10). In terms of f this yields2

Res[f(z0)] =
1

(m " 1)!
lim

z" z0

dm! 1

dzm! 1 [(z " z0)mf(z)]. (21.4)

For the special, but important, case of a simple pole, we obtain

Res[f(z0)] = lim
z" z0

[(z " z0)f(z)]. (21.5)

The most widespread application of residues occurs in the evaluation of application of the
residue theorem in
evaluating definite
integrals

real definite integrals. It is possible to “complexify” certain real definite in-
tegrals and relate them to contour integrations in the complex plane. What
is typically involved is the addition of a number of semicircles to the real
integral such that it becomes a closed contour integral whose value can be
determined by the residue theorem. One then takes the limit of the contour
integral when the radii of the semicircles go to infinity or zero. In this limit
the contributions from the semicircles should vanish for the method to work.
In that case, one recovers the real integral. There are three types of integrals
most commonly encountered. We discuss these separately below. In all cases
we assume that the contribution of the semicircles will vanish in the limit.

21.2 Integrals of Rational Functions

The first type of integral we can evaluate using the residue theorem is of the
form

I1 =
" #

!#

p(x)
q(x)

dx,

where p(x) and q(x) are real polynomials, and q(x) #= 0 for any real x. We
can then write

I1 = lim
R"#

" R

! R

p(x)
q(x)

dx = lim
R"#

"

Cx

p(z)
q(z)

dz,

where Cx is the (open) contour lying on the real axis from " R to +R. We
now close that contour by adding to it the semicircle of radius R [see Fig-
ure 21.2(a)]. This will not a! ect the value of the integral because, by our

2The limit is taken because in many cases the mere substitution of z0 may result in an
indeterminate form.
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Figure 21.2: (a) The large semicircle is chosen in the UHP. (b) Note how the direction
of contour integration is forced to be clockwise when the semicircle is chosen in the
LHP.

assumption, the contribution of the integral of the semicircle tends to zero in
the limit R ! " . We close the contour in the upper half-plane (UHP) if q(z)
has a zero there. We then get

I1 = lim
R!"

!

C

p(z)
q(z)

dz = 2 ! i
k"

j =1

Res
#
p(zj )
q(zj )

$
,

where C is the closed contour composed of the interval (# R, R) and the
semicircleCR , and {zj }k

j =1 are the zeros ofq(z) in the UHP. We may instead
close the contour in the lower half-plane (LHP), in which case

I1 = # 2! i
m"

j =1

Res
#
p(zj )
q(zj )

$
,

where{zj }m
j =1 are the zeros ofq(z) in the LHP. The minus sign indicates that

in the LHP we (are forced to) integrate in the negative sense.

Example 21.2.1. Let us evaluate the integral I =
%!

0 x2 dx/ [(x2 + 1)( x2 + 9)].
Since the integrand is even, we can extend the interval of integration to all real
numbers (and divide the result by 2). It is shown below that in the limit that the
radius of the semicircle goes to inÞnity, the integral of that semicircle goes to zero.
Therefore, we write the contour integral corresponding to I :

I =
1
2

!

C

z2 dz
(z2 + 1)( z2 + 9)

,

where C is as shown in Figure 21.2(a). Note that the contour is integrated in the
positive sense. This is always true for the UHP. The singularities of the function
in the UHP are the simple poles i and 3i corresponding to the simple zeros of the
denominator. By (21.5), the residues at these poles are
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Res[f (i )] = lim
z ! i

!
(z ! i )

z2

(z ! i )( z + i )( z2 + 9)

"
= !

1
16i

,

Res[f (3i )] = lim
z ! 3i

!
(z ! 3i )

z2

(z2 + 1)( z ! 3i )( z + 3 i )

"
=

3
16i

.

Thus, we obtain

I =
# "

0

x2 dx
(x2 + 1)( x2 + 9)

=
1
2

$

C

z2 dz
(z2 + 1)( z2 + 9)

= ! i
%

!
1

16i
+

3
16i

&
=

!
8

.

It is instructive to obtain the same results using the LHP. In this case the contour
is as shown in Figure 21.2(b). It is clear that the interior is to our right as we traverse
the contour. So we have to introduce a minus sign for its integration. The singular
points are at z = ! i and z = ! 3i . These are simple poles at which the residues of
the function are

Res[f (! i )] = lim
z !# i

!
(z + i )

z2

(z ! i )( z + i )( z2 + 9)

"
=

1
16i

,

Res[f (! 3i )] = lim
z !# 3i

!
(z + 3 i )

z2

(z2 + 1)( z ! 3i )( z + 3 i )

"
= !

3
16i

.

Therefore,

I =
# "

0

x2 dx
(x2 + 1)( x2 + 9)

=
1
2

$

C

z2 dz
(z2 + 1)( z2 + 9)

= ! ! i
%

1
16i

!
3

16i

&
=

!
8

.

We now show that the integral of the large circle ! tends to zero. On such a
circle, z = Rei ! ; therefore

#

!

z2 dz
(z2 + 1)( z2 + 9)

=
#

!

R2e2i ! Rei ! d"
(R2e2i ! + 1)( R2e2i ! + 9)

.

In the limit that R " # , we can ignore the small numbers 1 and 9 in the denom-
inator. Then the overall integral becomes 1/R times a Þnite integral over " . It
follows that as R tends to inÞnity, the contribution of the large circle indeed goes to
zero. !

Example 21.2.2. Let us now consider a more complicated integral:
# "

#"

x2 dx
(x2 + 1)( x2 + 4) 2

which turns into
'

C z2 dz/ [(z2 + 1)( z2 + 4) 2]. The poles in the UHP are at z = i and
z = 2 i . The former is a simple pole, and the latter is a pole of order 2. Thus,

Res[f (i )] = lim
z ! i

!
(z ! i )

z2

(z ! i )( z + i )( z2 + 4) 2

"
= !

1
18i

,

Res[f (2i )] =
1

(2 ! 1)!
lim

z ! 2i

d
dz

!
(z ! 2i )2 z2

(z2 + 1)( z + 2 i )2(z ! 2i )2

"

= lim
z ! 2i

d
dz

!
z2

(z2 + 1)( z + 2 i )2

"
=

5
72i

,

and # "

#"

x2 dx
(x2 + 1)( x2 + 4) 2

= 2 ! i
%

!
1

18i
+

5
72i

&
=

!
36

.

Closing the contour in the LHP would yield the same result as the reader is urged
to verify. !
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21.3 Products of Rational and Trigonometric
Functions

The second type of integral we can evaluate using the residue theorem is of
the form ! ∞

−∞

p(x)
q(x)

cosax dx or
! ∞

−∞

p(x)
q(x)

sinax dx,

where a is a real number, p(x) and q(x) are real polynomials in x, and q(x)
has no real zeros. These integrals are the real and imaginary parts of

I 2 =
! ∞

−∞

p(x)
q(x)

eiax dx.

The presence ofeiax dictates the choice of the half-plane: Ifa ! 0, we choose
the UHP because

eiaz = eia (x + iy ) = eiax e−ay where y > 0,

and the negative exponent ensures convergence for largeR and y. For the same
reason, we choose the LHP whena " 0. The following examples illustrate the
procedure.

Example 21.3.1. Let us evaluate
" !

"! cosax dx/ (x2 + 1) 2 where a ̸= 0. This
integral is the real part of the integral I 2 =

" !
"! eiax dx/ (x2 + 1) 2. When a > 0, we

close in the UHP. Then we proceed as for integrals of rational functions. Thus, we
have

I 2 =
#

C

eiaz

(z2 + 1) 2
dz = 2 ! i Res[f (i )] for a > 0,

because there is only one singularity in the UHP at z = i which is a pole of order 2.
We next calculate the residue:

Res[f (i )] = lim
z # i

d
dz

$
(z − i )2 eiaz

(z − i )2(z + i )2

%

= lim
z # i

d
dz

$
eiaz

(z + i )2

%
= lim

z # i

$
(z + i )iaeiaz − 2eiaz

(z + i )3

%
=

e" a

4i
(1 + a).

Substituting this in the expression for I 2 , we obtain I 2 = ( ! / 2)e" a (1 + a) for a > 0.
When a < 0, we have to close the contour in the LHP, where the pole of order

2 is at z = −i and the contour is taken clockwise. Thus, we get

I 2 =
#

C

eiaz

(z2 + 1) 2
dz = −2! i Res[f (−i )] for a < 0.

For the residue we obtain

Res[f (−i )] = lim
z #" i

d
dz

$
(z + i )2 eiaz

(z − i )2(z + i )2

%
= −ea

4i
(1 − a)

and the expression for I 2 becomesI 2 = ( ! / 2)ea (1 − a) for a < 0. We can combine
the two results and write

! !

"!

cosax
(x2 + 1) 2

dx = Re( I 2) = I 2 =
!
2

(1 + |a|)e" |a | .
!
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Example 21.3.2. As another example, let us evaluate
∫ !

"!

x sin ax
x4 + 4

dx where a ̸= 0 .

This is the imaginary part of the integral I 2 =
∫ !

"! xeiax dx/ (x4+4) which, in terms
of z and for the closed contour in the UHP (when a > 0), becomes

I 2 =
∮

C

zeiaz

z4 + 4
dz = 2 πi

m∑

j=1

Res[f (zj )] for a > 0, (21.6)

where C is the large semicircle in the UHP. The singularities are determined by the
zeros of the denominator: z4 + 4 = 0 or z = 1 ± i, −1± i . Of these four simple poles
only two, 1 + i and −1 + i , are in the UHP. We now calculate the residues:

Res[f (1 + i )] = lim
z# 1+i

(z − 1− i )
zeiaz

(z − 1− i )( z − 1 + i )( z + 1 − i )( z + 1 + i )

=
(1 + i )eia(1+i)

(2i )(2)(2 + 2 i )
=

eiae" a

8i
,

Res[f (−1 + i )] = lim
z#" 1+i

(z + 1 − i )
zeiaz

(z + 1 − i )( z + 1 + i )( z − 1− i )( z − 1 + i )

=
(−1 + i )eia(" 1+i)

(2i )(−2)(−2 + 2 i )
= −e" iae" a

8i
.

Substituting in Equation (21.6), we obtain

I 2 = 2 πi
e" a

8i
(eia − e" ia) = i

π
2

e" a sin a.

Thus, ∫ !

"!

x sin ax
x4 + 4

dx = Im( I 2) =
π
2

e" a sin a for a > 0. (21.7)

For a < 0, we could close the contour in the LHP. But there is an easier way of
getting to the answer. We note that −a > 0, and Equation (21.7) yields

∫ !

"!

x sin ax
x4 + 4

dx = −
∫ !

"!

x sin[(−a)x]
x4 + 4

dx = −π
2

e" (" a) sin(−a) =
π
2

ea sin a.

We can collect the two cases in
∫ !

"!

x sin ax
x4 + 4

dx =
π
2

e" |a| sin a.
!

Example 21.3.3. The integral
∫ !
0

sin ax
x dx occurs frequently in physics. To eval-

uate it, Þrst we assume that a > 0 and note that since the integrand is even, we can
extend the lower limit of integration to −∞ and write

∫ !

0

sin ax
x

dx =
1
2

∫ !

"!

sin ax
x

dx.

As in the previous examples, we are inclined to choose the contourC in the UHP.
However, sinceC passes through the origin, this will not work because the origin is
the pole of the integrand. So, letÕs avoid the origin by going around it on a small
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Figure 21.3: To avoid the origin move on an inÞnitesimal semicircleγϵ of radius ϵ.

circle of radius ϵ as shown in Figure 21.3. This contour does not surround a pole.
Therefore, we can write

0 =
!

C

eiaz

z
dz =

" −ϵ

−∞

eiax

x
dx +

"

γ!

eiaz

z
dz +

" ∞

ϵ

eiax

x
dx

As ϵ → 0, the two integrals in x become a single integral over all real numbers.
Thus, we get " ∞

−∞

eiax

x
dx = − lim

ϵ→0

"

γ!

eiaz

z
dz

But on γϵ, z = ϵeiθ. Thus

lim
ϵ→0

"

γ!

eiaz

z
dz = lim

ϵ→0

" 0

π

eiaϵei"

ϵeiθ
iϵeiθdθ = i lim

ϵ→0

" 0

π

eiaϵei"
dθ = −iπ

and " ∞

−∞

eiax

x
dx = iπ.

Putting everything together, we obtain
" ∞

0

sin ax
x

dx =
1
2

" ∞

−∞

sin ax
x

dx =
1
2

Im
" ∞

−∞

eiax

x
dx =

1
2

Im( iπ) =
π
2

If a < 0, then sin ax = − sin |a|x and we get the negative of the answer above. !

21.4 Functions of Trigonometric Functions

The third type of integral we can evaluate using the residue theorem involves
only trigonometric functions and is typically of the form

" 2!

0
F (sin ! , cos! ) d! ,

whereF is some (typically rational) function 3 of its arguments. Since! varies
from 0 to 2" , we can consider it as the angle of a pointz on the unit circle

3Recall that a rational function is, by deÞnition, the ratio of two polynomials.
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centered at the origin. Then z = ei ! and e! i ! = 1/z, and we can substitute
cos! = ( z + 1/z)/2, sin! = ( z ! 1/z)/(2i), and d! = dz/(iz) in the original
integral to obtain ∮

C
F

(
z ! 1/z

2i
,
z + 1/z

2

)
dz

iz
.

This integral can often be evaluated using the method of residues.

Example 21.4.1. Let us evaluate the integral
∫ 2π

0 dθ/ (1 + a cos θ) where |a| < 1.
Substituting for cos θ and dθ in terms of z, we obtain

∮

C

dz/iz
1 + a[(z2 + 1)/ 2z]

=
2
i

∮

C

dz
2z + az2 + a

,

where C is the unit circle centered at the origin. The singularities of the integrand
are the zeros of its denominator 2z + az2 + a ! a(z " z1)(z " z2) with

z1 =
" 1 +

#
1 " a2

a
and z2 =

" 1 "
#

1 " a2

a
.

For |a| < 1 it is clear that z2 will lie outside the unit circle C; therefore, it does not
contribute to the integral. But z1 lies inside, and we obtain

∮

C

dz
2z + az2 + a

= 2πi Res[f (z1)].

The residue of the simple pole at z1 can be calculated:

Res[f (z1)] = lim
z→z1

(z " z1)
1

a(z " z1)(z " z2)
=

1
a

(
1

z1 " z2

)

=
1
a

(
a

2
#

1 " a2

)
=

1

2
#

1 " a2
.

It follows that
∫ 2π

0

dθ
1 + a cos θ

=
2
i

∮

C

dz
2z + az2 + a

=
2
i
2πi

(
1

2
#

1 " a2

)
=

2π
#

1 " a2
. !

Example 21.4.2. As another example, let us consider the integral

I =

∫ π

0

dθ
(a + cos θ)2

where a > 1.

Since cos θ is an even function of θ, we may write

I =
1
2

∫ π

−π

dθ
(a + cos θ)2

where a > 1.

This integration is over a complete cycle around the origin, and we can make the
usual substitution:

I =
1
2

∮

C

dz/iz
[a + (z2 + 1)/ 2z]2

=
2
i

∮

C

z dz
(z2 + 2az + 1)2

.

The denominator has the roots z1 = " a +
#

a2 " 1 and z2 = " a "
#

a2 " 1 which
are both of order 2. The second root is outside the unit circle because a > 1. The
reader may verify that for all a > 1, z1 is inside the unit circle. Since z1 is a pole of
order 2, we have
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Res[f (z1)] = lim
z ! z1

d
dz

[
(z ! z1)2 z

(z ! z1)2(z ! z2)2

]

= lim
z ! z1

d
dz

[
z

(z ! z2)2

]
=

1
(z1 ! z2)2

!
2z1

(z1 ! z2)3
=

a
4(a2 ! 1)3/ 2

.

We thus obtain
I =

2
i

2! i Res[f (z1)] =
! a

(a2 ! 1)3/ 2
. !

21.5 Problems

21.1. Evaluate each of the following integrals, for all of which C is the circle
|z| = 3:

(a)
∮

C

4z − 3
z(z − 2)

dz. (b)
∮

C

ez

z(z − i! )
dz. (c)

∮

C

cos z

z(z − ! )
dz.

(d)
∮

C

z2 + 1
z(z − 1)

dz. (e)
∮

C

cosh z

z2 + ! 2 dz. (f)
∮

C

1 − cos z

z2 dz.

(g)
∮

C

sinh z

z4 dz. (h)
∮

C
z cos

(
1
z

)
dz. (i)

∮

C

dz

z3(z + 5)
dz.

(j)
∮

C
tan z dz. (k)

∮

C

dz

sinh 2z
dz. (l)

∮

C

ez

z2 dz.

(m)
∮

C

dz

z2 sin z
dz. (n)

∮

C

ez dz

(z − 1)(z − 2)
.

21.2. Find the residue of f(z) = 1/ cos z at all its poles.

21.3. Evaluate the integral
∫ ∞

0 dx/[(x2 + 1)(x2 + 4)] by closing the contour
(a) in the UHP and (b) in the LHP.
21.4. Evaluate the following integrals in which a and b are nonzero real con-
stants:

(a)
∫ ∞

0

2x2 + 1
x4 + 5x2 + 6

dx. (b)
∫ ∞

0

dx

6x4 + 5x2 + 1
. (c)

∫ ∞

0

dx

x4 + 1
.

(d)
∫ ∞

0

cosxdx

(x2 + a2)2(x2 + b2)
. (e)

∫ ∞

0

cos ax

(x2 + b2)2 dx. (f)
∫ ∞

0

dx

(x2 + 1)2 .

(g)
∫ ∞

0

dx

(x2 + 1)2(x2 + 2)
. (h)

∫ ∞

0

2x2 − 1
x6 + 1

dx. (i)
∫ ∞

0

x2dx

(x2 + a2)2 .

(j)
∫ ∞

−∞

xdx

(x2 + 4x + 13)2 . (k)
∫ ∞

0

x3 sin ax

x6 + 1
dx. (l)

∫ ∞

0

x2 + 1
x2 + 4

dx.

(m)
∫ ∞

−∞

x cosxdx

x2 − 2x + 10
. (n)

∫ ∞

−∞

x sin xdx

x2 − 2x + 10
. (o)

∫ ∞

0

dx

x2 + 1
.

(p)
∫ ∞

0

x2dx

(x2 + 4)2(x2 + 25)
. (q)

∫ ∞

0

cos ax

x2 + b2 dx. (r)
∫ ∞

0

dx

(x2 + 4)2 .

21.5. Evaluate each of the following integrals by turning them into contour
integrals around the unit circle.
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(a)
! 2π

0

dθ

5 + 4 sin θ
. (b)

! 2π

0

dθ

a + cos θ
where a > 1.

(c)
! 2π

0

dθ

1 + sin2 θ
. (d)

! 2π

0

dθ

(a + bcos2 θ)2 where a, b > 0.

(e)
! 2π

0

cos2 3θ

5 − 4 cos 2θ
dθ. (f)

! π

0

dφ

1 − 2a cosφ + a2 where a ̸= ±1.

(g)
! π

0

cos2 3φ dφ

1 − 2a cosφ + a2 where a ̸= ±1.

(h)
! π

0

cos 2φ dφ

1 − 2a cosφ + a2 where a ̸= ±1.

21.6. Use the method of residues to show that
! π

0
cos2n θ dθ = π

(2n)!
22n (n!)2

21.7. Use the contour in Figure 21.4(a) to show that
! ∞

−∞

sin x
x

dx = π

by letting X → ∞, Y → ∞, and ϵ → 0.

21.8. Use the contour in Figure 21.4(b) to show that
! ∞

0

1
1 + xn dx =

π/n
sin(π/n )

by letting R → ∞.

21.9. Use the contour in Figure 21.4(c) to show that
! ∞

0
sin(x2) dx =

! ∞

0
cos(x2) dx =

"
π

8

by letting R → ∞.

X−X −ε ε

X + iY−X + iY

R

R

π /42π /n

R

R

(a) (c)(b)

Figure 21.4: (a) The contour used for sin x/x . (b) The contour used for 1/ (1 + xn ).
(c) The contour used for sin(x2).


